Как обозначается коэффициент трансформации

Содержание

Параметры трансформатора тока

Как обозначается коэффициент трансформации

Доброго времени суток, уважаемые гости и читатели сайта «Заметки электрика».

Сегодня мы рассмотрим основные характеристики и параметры трансформаторов тока. Эти параметры будут необходимы нам для правильного выбора трансформаторов тока.

Итак, поехали.

Основные характеристики и параметры трансформаторов тока

1. Номинальное напряжение трансформатора тока

Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока.

Существует стандартный ряд номинальных значений напряжения у трансформаторов тока:

Ниже смотрите примеры трансформаторов тока с номинальным напряжением 660 (В) и 10 (кВ). Разница на лицо.

2. Номинальный ток первичной цепи трансформатора тока

Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока.

Обозначается этот параметр индексом — I1н

Существует стандартный ряд номинальных значений первичных токов у выпускаемых трансформаторов тока:

Прошу обратить внимание на то, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 300, 600, 750, 1200, 1500, 3000 и 6000 (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 320, 630, 800, 1250, 1600, 3200 и 6300 (А). В остальных случаях наибольший первичный ток не должен быть больше номинального значения первичного тока.

Ниже на фото показан трансформатор тока с номинальным первичным током равным 300 (А).

3. Номинальный ток вторичной цепи трансформатора тока

Еще одним параметром трансформатора тока является номинальный ток вторичной цепи, или номинальный вторичный ток — это ток, протекающий по вторичной обмотке трансформатора тока.

Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А).

Обозначается этот параметр индексом — I2н

Сам лично ни разу не встречал трансформаторы тока со вторичным током 1 (А). Также по индивидуальному заказу можно заказать ТТ с номинальным вторичным током равным 2 (А) или 2,5 (А).

4. Вторичная нагрузка трансформатора тока

Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи). Это значение измеряется в омах (Ом).

Обозначается индексом — Z2н

Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе.

Если сказать точно по определению, то вторичная нагрузка трансформатора тока — это вторичная нагрузка с коэффициентом мощности (cos=0,8), при которой сохраняется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его номинального значения.

Вот так сложно написал, но просто вчитайтесь в текст внимательнее и все поймете.

Обозначается индексом — S2н.ном

И здесь тоже существует ряд стандартных значений номинальной вторичной нагрузки трансформаторов тока, выраженных через вольт-амперы при cos=0,8:

Чтобы выразить эти значения в омах, то воспользуйтесь следующей формулой:

К этому вопросу мы еще с Вами вернемся. В следующих статьях я покажу Вам как самостоятельно можно рассчитать вторичную нагрузку трансформатора тока наглядным примером из своего дипломного проекта. Чтобы ничего не пропустить, подписывайтесь на новые статьи с моего сайта. Форму подписки Вы можете найти после статьи, либо в правой колонке сайта.

5. Коэффициент трансформации трансформатора тока

Еще одним из основных параметров трансформатора тока является коэффициент трансформации. Коэффициент трансформации трансформатора тока — это отношение величины первичного тока к величине вторичного тока.

При расчетах коэффициент трансформации разделяют на:

  • действительный (N)
  • номинальный (Nн)

В принципе их названия говорят сами за себя.

Действительный коэффициент трансформации — это отношение действительного первичного тока к действительному вторичному току. А номинальный коэффициент — это отношение номинального первичного тока к номинальному вторичному току.

Вот примеры коэффициентов трансформации трансформаторов тока:

  • 150/5 (N=30)
  • 600/5 (N=120)
  • 1000/5 (N=200)
  • 100/1 (N=100)

6. Электродинамическая стойкость

Здесь сразу нужно внести ясность, что такое ток электродинамической стойкости — это максимальное значение амплитуды тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без каких-либо повреждений, препятствующих дальнейшей его исправной работе.

Своими словами, это способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания.

Ток электродинамической стойкости обозначается индексом — Iд.

Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости Iд к амплитуде номинального первичного тока I1н.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока. Читайте статью про классификацию трансформаторов тока. По другим типам трансформаторов тока данные о токе электродинамической стойкости можно найти все в том же паспорте.

7. Термическая стойкость

Что такое ток термической стойкости?

А это максимальное действующее значение тока короткого замыкания за промежуток времени t, которое трансформатор тока выдерживает без нагрева токоведущих частей до превышающих допустимых температур и без повреждений, препятствующих дальнейшей его исправной работе. Так вот температура токоведущих частей трансформатора тока, выполненных из меди не должна быть больше 250 градусов, из алюминия — 200.

Ток термической стойкости обозначается индексом — ItТ.

Своими словами, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени.

Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н.

Все данные о токе термической стойкости Вы можете найти в паспорте на трансформатор тока.

Ниже я представляю Вашему вниманию скан-копию этикетки на трансформатор тока типа ТШП-0,66-5-0,5-300/5 У3, где указаны все его вышеперечисленные основные параметры и характеристики.

P.S. На этом я завершаю свою статью про основные характеристики и параметры трансформаторов тока. В следующих статьях я расскажу Вам про обозначение выводных концов, принцип работы трансформатора тока, режимы работы, класс точности и другие интересные темы.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/parametry-transformatora-toka/

Коэффициент трансформации тока и примеры его расчетов

Как обозначается коэффициент трансформации

Все трансформаторы тока обладают рядом характеристик, которые позволяют использовать устройство в той или иной ситуации в зависимости от индивидуальных целей. Выбор конкретного трансформирующего прибора обусловлен в том числе и коэффициентом трансформатора тока. Как рассчитать эту величину и применить ее на практике? Рассмотрим основные виды трансформаторов этого типа.

Базовая классификация устройств трансформаторного тока

Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:

  1. Классы по способу установки:
  • Монтируемые на  поверхности или опорные трансформаторы.
  • Проходные, которые крепятся к шинопроводу и играют роль изолятора.
  • Шинные, прикрепленные к шине,  выполняющей функцию первичной обмотки.
  • Встроенные, устанавливаемые устройствах силового типа, а также баковых выключателях.
  • Разъемные, оперативно устанавливающиеся на кабелях и не требующие отключения цепи.

Трансформатор тока: а) – устройство трансформатора тока.

  • Классы по типологическим особенностям изоляции:
  • С изоляцией литого типа, в качестве которой используется эпоксидная смола и специальные изолирующие лаки.
  • Помещенные в корпус из пластмассы.
  • Имеющие  высокоэффективную твердую полимерную, бакелитовую или фарфоровую изоляцию.
  • Изолированные вязкими составами, обладающими обволакивающими свойствами.
  • Масляные, изолированные специальными составами.
  • Газонаполненные, использующиеся для высоких и сверхвысоких напряжений.
  • А также смешанная бумажно-масляная изоляция с внушительным ресурсом эффективности.

Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный

Классификация в зависимости от коэффициента трансформации ↑

Еще один немаловажный момент при выборе нужного трансформатора — это коэффициент трансформации тока (Кт).

По количеству коэффициентов трансформаторы тока можно определять как:

  • Одноступенчатые, имеющие всего один коэффициент трансформации.
  • Многоступенчатые, имеющие два и более Кт. Еще их называют каскадными. Большее число Кт получается в результате изменения количества витков в обмотках, а также при наличии вариативности, то есть нескольких вторичных обмоток.

Как выбрать трансформатор тока по коэффициенту трансформации? ↑

При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования.

Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе.

Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.

Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.

Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Как определить коэффициент трансформации самостоятельно? ↑

Как правило такие параметры обязательно указываются в документации, прилагающейся к трансформатору, а также в обязательном порядке обозначаются на оборудовании или корпусе устройства. Но бывает, что Кт трансформатора тока необходимо определить самостоятельно, имея только данные, полученные эмпирическим путем. Как это сделать?

Через первичную обмотку такого устройства необходимо пропустить ток, замкнув накоротко вторичную обмотку. Затем соответствующим прибором нужно измерить величину электрического тока, который проходит во время эксперимента по вторичной обмотке.

Первичная и вторичная обмотки.

После этого, следует значение первичного тока, которое было подано на первичную обмотку, разделить на значение тока, полученное в результате наших замеров во вторичной обмотке. Частное и будет искомым коэффициентов трансформации.

Особенности расчетов коэффициента трансформации ↑

Расчет отношений первичного и вторичного токов может вестись в двух направлениях в зависимости от задач, которые стоят перед специалистом.

Коэффициент трансформации трансформатора тока можно разделить на:

  • действительное значение (N);
  • номинальное значение (Nн).

В первом случае мы находим соотношение действительного первичного тока к действительному вторичному току. Во втором – отношение номинального первичного тока к номинальному.

К примерам стандартных величин коэффициента ТТ можно отнести: 150/5 (N=30), 600/5 (N=120), 1000/5 (N=200) и 100/1 (N=100).

Примеры расчетов ↑

Рассмотрим принцип расчета потребления на примере трансформатора тока с коэффициентов трансформации 100/5.

Как определить коэффициент трансформации трансформатора тока? Если вы сняли показания счетчика по учету электроэнергии и значение показаний оказалось равно 100 кВт/часов, при этом прибор используется с трансформатором 100/5. То расчет фактического потребления не пониженных значений следует производить следующим образом:

Сперва следует узнать во сколько раз ваш трансформатор снижает ток нагрузки. Для этого нужно просто 100 разделить на 5 — вы получите значение коэффициента — 20.

Узнать реально существующий расход электроэнергии можно, взяв коэффициент и умножив его на значение вашего прибора учета, то есть на 100 кВт. Реальное потребление составило 2000 кВт/часов.

Особенности значений, получаемых при измерении коэффициента трансформации ↑

Измеряя коэффициент трансформации ТТ, следует знать, что допустимые отклонения полученного значения от прописанных в документации или показателей аналогичного полностью исправного прибора не должны быть более 2 процентов.

Особенностью замеров у встроенных устройствах является то, что все показания снимаются только на ответвлениях, которые являются рабочими. Остальные же части обмоток в расчет не берутся и не проверяются.

Разделительное трансформирующее устройство на вторичной обмотке может создавать напряжение около 5В, а значение тока должно быть около 1000А.

На что еще обратить внимание при выборе трансформатора? ↑

Не забывайте, что любое оборудование также имеет свой срок «годности». Потому, при покупке обязательно проверьте год и квартал выпуска вашего трансформатора. Напомним, что межповерочные интервалы у всех ТТ должны составлять не более 4 лет с момента изготовления.

Разновидности трансформаторов тока.

Чтобы избежать покупки просроченного оборудования, обязательно сверьте данные, которые указаны в паспорте изделия и на шильдике, закрепленном на корпусе трансформатора. Они должны полностью совпадать.

Если вы приобретаете трехфазный счетчик, то с момента выпуска и до пломбировки должно пройти не более года иначе вам придется потратить дополнительные средства, оплачивая государственную проверку или покупку более «свежего» прибора учета. Чтобы проверить дату, обратите внимание на свинцовую пломбу — там указан квартал выпуска римскими цифрами.

Источник: https://energiatrend.ru/news/koefficient-transformacii-transformatora-toka

Что такое коэффициент трансформации

Как обозначается коэффициент трансформации

По своей сути коэффициент трансформации представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение.

Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор.

В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.

Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.

Основной параметр трансформатора

Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.

Формула

При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.

В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение.

С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети.

Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.

Напряжение короткого замыкания трансформатора

Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров.

В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания.

Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.

В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.

Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора.

Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода.

Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.

Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства.

Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч.

Полученной значение и будет реальным расходом электроэнергии.

Устройство трансформатора

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными.

Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения.

В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние.

Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности.

Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Как определить коэффициент трансформации

Источник: https://electric-220.ru/news/chto_takoe_koehfficient_transformacii/2017-01-19-1160

Коэффициент трансформации это – советы электрика – Electro Genius

Как обозначается коэффициент трансформации

На практике при использовании энергии электрического тока часто появляется необходимость изменять напряжение, которое подается от генератора. Переменное напряжение можно масштабировать (повышать или понижать) почти без потерь энергии.

Устройства при помощи которых производят преобразование напряжения (силы тока, сопротивления и т.д.) называют трансформаторами.

Трансформаторы не преобразовывают виды энергии, а изменяют величину заданного параметра цепи, уменьшая его или увеличивая, поэтому, когда в данном случае говорят о преобразовании, то имеют в виду масштабирование.

Или, проще говоря, коэффициент трансформации показывает, во сколько раз трансформатор изменяет напряжение (силу тока и т.д.).

Обозначают коэффициент трансформации чаще всего буквами k или n (могут встречаться другие обозначения).

Если, то такой трансформатор называют повышающим, если больше единицы — то понижающим.

Разные виды трансформаторов и их коэффициенты трансформации

Так, при помощи трансформатора с параллельным подключением обмотки к источнику электрической энергии производят масштабирование напряжения (трансформатор напряжения), при этом коэффициент трансформации рассчитывают:

где— напряжение на входе трансформатора (на первичной обмотке);— напряжение на выходе трансформатора (на вторичной обмотке);— количество витков на первичной обмотке;— число витков на вторичной обмотке.

Если потерями в обмотках трансформатора пренебрегать нельзя, то коэффициент трансформации можно найти по формуле:

где— сопротивление первичной обмотки трансформатора— сопротивление вторичной обмотки; — ЭДС, которая наводится в каждом из витков обмоток;и— силы токов в соответствующих обмотках.

При помощи трансформатора с параллельным подключением можно масштабировать сопротивление. Расчет коэффициента трансформации при этом связывают с равенством мощности получаемой трансформатором от источника и отдаваемой во вторичную цепь. При этом потерями пренебрегают. Обозначим коэффициент трансформации сопротивления. Можно записать, что:

где— коэффициент трансформации по напряжению;— входное сопротивление трансформатора и нагрузки по отношению к его первичной цепи,— сопротивление нагрузки во вторичной цепи.

Если проводят масштабирование силы тока, то используют трансформатор с последовательным подключением первичной обмотки к источнику (трансформатор тока). Тогда коэффициент трансформации вычисляют как:

Последнее равенство в выражении (3) справедливо, только если не учитывать потери и считать, что:

Иначе возникает сила тока, которая показывает ток, составленный из тока намагничивания и активных потерь в магнитопроводе (этот ток еще называют током «холостого хода»). Еслито мы имеем связь между силами токов, текущими в обмотках трансформатора в виде:

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник:

Понятие о коэффициенте трансформации

Для произведения рационального контроля электроэнергии на крупных объектах используется специальное оборудование, снижающее мощность на выходах электросчетчика. Данные устройства не соединены напрямую с электросетью здания, что обозначает невозможность прямого включения высоковольтного напряжения к общей электросети.

Отсюда следует, чтобы минимизировать возникновение неисправностей надо уменьшать мощность с помощью трансформаторного оборудования. В таком случае электросчетчики зафиксируют нагрузку, сниженную в десятки раз.

Полученные таким образом результаты и будут КТ, а, чтобы определить настоящий расход электричества, следует умножить показания электросчетчика на используемый расчетный коэффициент.

Формула для определения коэффициента трансформации

Из соотношения видно, как отличаются входные показания напряжения и тока от выходных. При значениях больше единицы, проводятся мероприятия по снижению напряжения, при меньших, наоборот — повышают с помощью специальных устройств. Данные коэффициенты различаются для показания напряжения и тока. Формула расчета:

k=U1/U2=N1/N2 ≈ I2/I1,

где:

  • U1 и U2 – показания напряжения на 1 и 2 обмотке;
  • N1 и N2 – число витков первичной и вторичной обмотки;
  • I2 и I1 – сила тока в первичной и вторичной обмотке.

Чаще всего данные показатели указаны в документах оборудования и приборов. Если документов нет, то все показатели можно определить по условным знакам на корпусах устройств.

Возникает проблема, когда нужно произвести расчет КТ по экспериментальным данным.

Для этого электричество пропускают через первичную обмотку электроприбора и замыкают на вторичной, а затем измеряют ток во вторичной обмотке.

Как узнать настоящее потребление электроэнергии

Чтобы рассчитать реальный расход электричества необходимо показания электросчетчика умножить на коэффициент распределения. В реальности, данный КТ равен 20, а значит, для получения правдивых значений потребления электроэнергии показания необходимо умножать именно на эту цифру.

Виды счетчиков электричества

Приборы учета электрической энергии — оборудование для учета расхода потребляемого ресурса и они сохраняют данные по потреблению. Всего существует 3 вида приборов учета электроэнергии: индукционные, электронные, гибридные. Рассмотрим каждый вариант более детально.

Индукционные счетчики

Приборы первого типа в своем составе имеют две катушки, одна из них ограничивает переменный ток, исключая неточности и образуя магнитное поле. Вторая — образует переменный ток.

К плюсам этих счетчиков можно отнести их высокую работоспособность, простая конструкция. Несмотря на перепады напряжения, такие счетчики прослужат очень долго. Индукционные устройства достаточно габаритны, но имеют доступную цену.

Даже несмотря на распространенность такие счетчики энергоемкими и низкой точности.

Электронные приборы учета

Данные счетчики достаточно дорогостоящи, однако цена оправдывает качество. Эти устройства имеют высокий класс точности, что сводит погрешности показаний к минимуму. У данных устройств есть функция многотарифности.

Принцип действия такого счетчика основан на том, что он трансформирует сигнал в цифровой код, который затем расшифровывается микроконтроллером. Затем данные выводятся на дисплей. Такие счетчики имеют возможность вести учет в нескольких направлениях, они намного компактнее и занимают меньше места.

К отрицательным качествам следует отнести гиперчувствительность к скачкам напряжения, а также такие счетчики непригодны для ремонта.

Гибридные счетчики

Сейчас такой вид устройств редко используется обывателями, чаще их используют в физических лабораториях с определенной целью. Такие счетчики оснащены цифровым интерфейсом. В своем арсенале эти устройства имеют цифровой интерфейс, а измерительная часть представлена одним из двух видов, рассмотренных выше.

Советы и итоги

Сейчас в многоэтажных жилых и нежилых помещениях устанавливаются однофазные приборы учета электроэнергии. Однако, ввиду обилия бытовых приборов различной мощности лучше отдать свой голос в пользу трехфазных устройств учета.

При подборе счетчика обратите внимание на расчетные показатели, коэффициенты и точность устройства. Этими показателями и определяется качество счетчика.

Все новые установленные счетчики должны быть опломбированы пломбой установленного образца, помните об этом!

Источник:

Коэффициент трансформации понижающих и повышающих трансформаторов

Коэффициент трансформации трансформатора определяется отношением количества витков первичной обмотки к количеству витков вторичной.

Его можно также рассчитать, поделив соответствующие показатели ЭДС в обмотках. В идеальных условиях (если отсутствуют электрические потери) показатель коэффициента трансформации рассчитывается отношением напряжений на зажимах обмоток. У трансформаторов, имеющих более двух обмоток, этот параметр определяется для каждой обмотки поочередно.

Коэффициент трансформации понижающих трансформаторов превышает единицу, повышающих – находится в пределах от 0 до 1. Фактически, коэффициент трансформации показывает, во сколько раз трансформатор понижает поданное на него напряжение.

С помощью коэффициента трансформации есть возможность проверить правильность количества витков, поэтому он определяется для всех имеющихся фаз и на каждом из ответвлений. Подобные измерения и расчеты помогают выявить обрывы проводов в обмотках и узнать полярность каждой из обмоток.

Значение коэффициента трансформации определить можно несколькими способами:

  • измерением напряжений на обмотках двумя вольтметрами;
  • с помощью моста переменного тока;
  • по паспортным данным.

Реальный показатель рекомендуется измерять с использованием 2-х вольтметров. Номинальный показатель коэффициента трансформации также возможно вычислить, используя номинальные значения напряжений на обмотках в режиме ХХ (холостого хода), указанные в паспорте трансформатора.

Трехобмоточные трансформаторы требуют выполнения измерений минимум для 2-х пар обмоток, имеющих меньший ток короткого замыкания. Если электрические элементы трансформатора расположены в защитном кожухе, под которым скрыты некоторые ответвления, то коэффициент трансформации определяется только для выведенных наружу зажимов обмоток.

Для однофазных трансформаторов рабочее значение коэффициента трансформации рассчитывают путем деления напряжения, подведенного к первичной цепи, на одновременно измеренное напряжение во вторичной цепи.

Для трехфазных трансформаторов эта процедура может выполняться несколькими методами: с подключением к высоковольтной обмотке напряжения от трехфазной сети, путем запитывания однофазным напряжением, с выведенной нулевой точкой и без нее. В любом случае, на одноименных зажимах противоположных обмоток замеряют показания линейных напряжений.

К обмоткам нельзя подключать напряжение, выше или существенно ниже номинального, значение которого указано в паспорте. В таком случае, возрастает погрешность измерений из-за потерь тока, потребляемого подключенным измерительным прибором и тока холостого хода.

Для проведения измерений должны использоваться вольтметры с классом точности в пределах 0,2-0,5. Ускорить и упростить определение коэффициента трансформации могут универсальные приборы (например, УИКТ-3), позволяющие производить измерения без подключения сторонних источников переменного напряжения.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник:

Коэффициент трансформации

Коэффициент трансформации – величина, показывающая во сколько раз входной параметр (напряжение, ток) меньше либо больше выходного.

Если цифра выше единицы, выполняется понижение, наоборот – меньше единицы демонстрирует устройство повышающее. Соответственно, различают коэффициенты трансформации по напряжению или току.

Чисто практическое деление, соответствующее решаемым задачам. Магнитное поле наводит в витках выходной обмотки ЭДС, током не являющуюся определенно.

Измеритель коэффициента трансформации

Устройство трансформаторов

Встречается полное непонимание принципов действия трансформатора. Почему малое количество витков выполняется толстым проводом, прочие вопросы – возникают у новичков. Начнем рассмотрением сердечников.

Выполняются из ферромагнитных материалов. Чтобы внутри распространялось поле. Именно оно является причиной генерации вторичной обмоткой ЭДС.

Майкл Фарадей изготовил сердечник опытного трансформатора (1831 год) из мягкой стали, ввиду выраженности свойств, сегодня поступают иначе:

  1. Электротехническая сталь содержит изрядную долю кремния (несколько %), значительно повышает удельное сопротивление материала. Жесткий сплав с долей углерода до 1%. Ферромагнитные свойства выражены нечетко, падают тепловые потери. В первую очередь – на вихревые токи Фуко. Наводятся переменным магнитным полем в железном сплаве, некоторых других материалах. При работе трансформатора резко растут потери с увеличением частоты, повышение удельного сопротивления подмешиванием кремния является эффективной мерой борьбы с указанным явлением. Потери перемагничивания снижаются применением жесткой стали. Марки Э42, 43, 320, 330, 340, 350, 360. Первая цифра указывает процентное содержание кремния (3 – порядка 4,8%), вторая — характеризует магнитные потери, конкретные значения приводятся ГОСТ (например, 3836), не являются определенными.
  2. Пермаллой представлен сплавом железо-никель. Характерной особенностью материала становится чрезвычайная высокая магнитная проницаемость. Поле внутри многократно усиливается. Пермаллой применяется в маломощных трансформаторах, где потери перемагничивания не могут быть большими по определению. Маркировка дополнена процентным содержанием металлов, Н указывает никель, Х — хром, С — кремний, А — алюминий.

Источник: https://orenburgelectro.ru/baza-znanij/koeffitsient-transformatsii-eto-sovety-elektrika.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.