Как изменить коэффициент трансформации трансформатора тока

Содержание

Трансформаторы тока с возможностью изменения коэффициента трансформации

Как изменить коэффициент трансформации трансформатора тока

Трансформаторы тока с возможностью изменения коэффициента трансформации

Реализуемая в Российской Федерации политика энергосбережения, а также растущая стоимость электрической энергии требуют все большей и большей эффективности ее учета.

Использование трансформаторов тока с большими номинальными первичными токами при значении фактических нагрузок присоединений менее 20% от номинального первичного тока трансформатора экономически нецелесообразно и приводит к тому, что часть транзита электрической энергии не учитывается.

Для обеспечения достаточной точности учета и сохранения существующих коэффициентов трансформации обмоток измерений и РЗА, проектировщики все чаще стали обращать внимания на трансформаторы тока с возможностью изменения коэффициента трансформации (КТ)

Изменение номинального КТ в трансформаторах тока возможно следующими способами:

1 способ: Применение трансформаторов тока с возможностью переключения по первичной стороне (исполнение «П»). Принципиальная электрическая схема представлена на рисунке 1.

Рис. 1 –Схема электрическая принципиальная для трансформаторов тока

 с возможностью переключения по первичной стороне.

Первичная катушка трансформаторов тока в исполнении «П» состоит из двух секций с равным количеством витков. Переключение КТ производится путем изменения количества витков в первичной катушке при помощи перемычек на первичных контактах.

Таким образом, возможно последовательное, либо параллельное соединение секций первичной катушки. При этом, количество витков во вторичных катушках при изменении КТ сохраняется.

Изменение КТ происходит на всех вторичных катушках данного трансформатора без изменения таких параметров, как номинальный класс точности, номинальный коэффициент безопасности приборов и номинальная вторичная нагрузка.

Имея неоспоримое преимущество в наличии разных коэффициентов трансформации в одном корпусе, стоит отметить и ограничения, связанные с конструктивными особенностями трансформаторов, которые имеются в первом способе изменения КТ:

  •  изменение коэффициента трансформации возможно только с двойной кратностью. Например 50-100/5; 100-200/5; 200-400/5 и т.д.;
  •  возможно только два коэффициента трансформации;
  •  ограничение по максимальному значению первичного тока (не более 600 А).
  •  трансформатор тока должен быть опорного типа.

2 способ: Применение трансформаторов тока с отпайками (ответвлениями) по вторичной стороне.

Вторичная катушка в данных трансформаторах имеет не только начало и конец обмотки, но и промежуточные ответвления (отпайки). Количество отпаек может быть несколько, но не менее одной. Переключение КТ производится путем изменения количества витков во вторичной катушке.

Рассмотрим более подробно второй способ на примере встроенного трансформатора тока с коэффициентами трансформации 200/5, 600/5, 1000/5.

Принципиальная электрическая схема данного трансформатора представлена на рисунке 2.

Рис. 2 –Схема электрическая принципиальная для встроенного трансформаторов тока

 с отпайками (ответвлениями) по вторичной стороне.

Для обеспечения наибольшего из коэффициентов трансформации обмотки 1000/5, подключение необходимо произвести к началу «И1» и концу «И4» обмотки. При этом, промежуточные ответвления «И2», «И3» не должны быть закорочены и заземлены.

В ином случае требуемый коэффициент трансформации, а следовательно, и класс точности, не будут обеспечены, т.к. часть витков обмотки будет закорочена. Необходимо также заземлять один из выводов («И1» или «И4») в соответствии с п.3.4.

23 ПУЭ.

Для обеспечения коэффициента трансформации 200

/5, подключение необходимо произвести к началу «И1» и к промежуточному ответвлению «И2». Все последующие ответвления «И3», «И4» не закорачиваются и не заземляются. Кроме этого, следуя требованиям ПУЭ необходимо заземлить один из выводов («И1» или «И2»).

Для обеспечения коэффициента трансформации 600/5, подключение необходимо произвести к началу «И1» и к промежуточному ответвлению «И3». Последующее ответвление «И4», промежуточное ответвление «И2», не закорачиваются и не заземляются. Заземляется один из выводов («И1» или «И3»).

Чаще всего заказчику нужны трансформаторы тока с несколькими отпайками, при этом номинальный класс точности, номинальный коэффициент безопасности приборов и номинальная вторичная нагрузка должны быть одинаковыми на каждой отпайке.

Например: ТВ-НТЗ-110-0.5Fs5/0.5Fs5/0.5Fs530/30/30-200/5-600/5-1000/5 40кА УХЛ2

Технически это сделать проблематично. Намотка вторичной обмотки с отпайкой ведется на один и тот же магнитопровод с установленной предельной индукцией, определяющей коэффициент безопасности, причем отношение количества витков отпайки к виткам обмотки равно отношению соответствующих им коэффициентов трансформации.

Исходя из расчета номинальной индукции в магнитопроводе:

при сохранении равенства номинальной нагрузки ​\( r_{2н } \)​ и остальных параметров обмотки с отпайкой, учитывая количество витков получаем отношение индукции ​\( B_{обм}⁄B_{отп } \)​, а значит и отношение коэффициентов безопасности  ​\( K_{(б обм)}⁄K_{(б отп)} =(B_{пред}/B_{обм} )⁄(B_{пред}/B_{отп} )=B_{отп}⁄B_{обм} \)​ пропорциональное отношению ​\( ω_{2 обм}⁄ω_{2 отп} \)​ . Аналогично при сохранении коэффициентов безопасности номинальные нагрузки будут зависеть от числа витков обмотки.

Таким образом, при расчете и изготовлении вторичных обмоток трансформаторов с отпайками возможно сохранение  ​\( K_{б } \)​ при различных номинальных нагрузках:

ТВ-НТЗ-110-0.5Fs5/0.5Fs5/0.5Fs5-30/50/100-200/5-600/5-1000/5 40кА УХЛ2,

либо сохранение нагрузок при различных значениях \( K_{б } \)​  :

ТВ-НТЗ-110-0.5Fs5/0.5Fs10/0.5Fs15-30/30/30-200/5-600/5-1000/5 40кА УХЛ2.

Сохранение номинального класса точности, номинального коэффициента безопасности приборов и номинальной вторичной нагрузки при изменении коэффициента трансформации возможно только в случае применения трансформаторов тока с переключением по первичной стороне (первый способ, рассматриваемый выше). Параметры вторичной катушки не меняются, т.к. переключение коэффициента трансформации происходит по первичной стороне.

Стоит отметить, что применение трансформаторов тока с отпайками (ответвлениями) по вторичной стороне (второй способ изменения КТ) в настоящий момент получил более широкой распространение, из-за следующих преимуществ по отношению к первому способу изменения КТ:

  •  возможность обеспечение от двух и более коэффициентов трансформации на одной вторичной обмотке;
  •  отсутствие ограничения по максимальному значению первичного тока;
  •  отсутствие ограничения по конструктивному типу исполнения трансформаторов. Изготовление с отпайками по вторичной стороне возможно на встроенных, опорных, проходных шинных и других типах трансформаторов.

Источник: https://intzv.ru/?p=3169

Параметры трансформатора тока

Как изменить коэффициент трансформации трансформатора тока

Доброго времени суток, уважаемые гости и читатели сайта «Заметки электрика».

Сегодня мы рассмотрим основные характеристики и параметры трансформаторов тока. Эти параметры будут необходимы нам для правильного выбора трансформаторов тока.

Итак, поехали.

Основные характеристики и параметры трансформаторов тока

1. Номинальное напряжение трансформатора тока

Первым основным параметром трансформатора тока, конечно же, является его номинальное напряжение. Под номинальным напряжением понимается действующая величина напряжения, при которой может работать ТТ. Это напряжение можно найти в паспорте на конкретный трансформатор тока.

Существует стандартный ряд номинальных значений напряжения у трансформаторов тока:

Ниже смотрите примеры трансформаторов тока с номинальным напряжением 660 (В) и 10 (кВ). Разница на лицо.

2. Номинальный ток первичной цепи трансформатора тока

Номинальный ток первичной цепи, или можно сказать, номинальный первичный ток — это ток, протекающий по первичной обмотке трансформатора тока, при котором предусмотрена его длительная работа. Значение первичного номинального тока также указывается в паспорте на конкретный трансформатор тока.

Обозначается этот параметр индексом — I1н

Существует стандартный ряд номинальных значений первичных токов у выпускаемых трансформаторов тока:

Прошу обратить внимание на то, что ТТ со значением номинального первичного тока 15, 30, 75, 150, 300, 600, 750, 1200, 1500, 3000 и 6000 (А) в обязательном порядке должны выдерживать наибольший рабочий первичный ток, равный соответственно, 16, 32, 80, 160, 320, 630, 800, 1250, 1600, 3200 и 6300 (А). В остальных случаях наибольший первичный ток не должен быть больше номинального значения первичного тока.

Ниже на фото показан трансформатор тока с номинальным первичным током равным 300 (А).

3. Номинальный ток вторичной цепи трансформатора тока

Еще одним параметром трансформатора тока является номинальный ток вторичной цепи, или номинальный вторичный ток — это ток, протекающий по вторичной обмотке трансформатора тока.

Значение номинального вторичного тока, тоже отображается в паспорте на трансформатор тока и оно всегда равно 1 (А) или 5 (А).

Обозначается этот параметр индексом — I2н

Сам лично ни разу не встречал трансформаторы тока со вторичным током 1 (А). Также по индивидуальному заказу можно заказать ТТ с номинальным вторичным током равным 2 (А) или 2,5 (А).

4. Вторичная нагрузка трансформатора тока

Под вторичной нагрузкой трансформатора тока понимается полное сопротивление его внешней вторичной цепи (амперметры, обмотки счетчиков электрической энергии, токовые реле релейной защиты, различные токовые преобразователи). Это значение измеряется в омах (Ом).

Обозначается индексом — Z2н

Также вторичную нагрузку трансформатора тока можно выразить через полную мощность, измеряемую в вольт-амперах (В*А) при определенном коэффициенте мощности и номинальном вторичном токе.

Если сказать точно по определению, то вторичная нагрузка трансформатора тока — это вторичная нагрузка с коэффициентом мощности (cos=0,8), при которой сохраняется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его номинального значения.

Вот так сложно написал, но просто вчитайтесь в текст внимательнее и все поймете.

Обозначается индексом — S2н.ном

И здесь тоже существует ряд стандартных значений номинальной вторичной нагрузки трансформаторов тока, выраженных через вольт-амперы при cos=0,8:

Чтобы выразить эти значения в омах, то воспользуйтесь следующей формулой:

К этому вопросу мы еще с Вами вернемся. В следующих статьях я покажу Вам как самостоятельно можно рассчитать вторичную нагрузку трансформатора тока наглядным примером из своего дипломного проекта. Чтобы ничего не пропустить, подписывайтесь на новые статьи с моего сайта. Форму подписки Вы можете найти после статьи, либо в правой колонке сайта.

5. Коэффициент трансформации трансформатора тока

Еще одним из основных параметров трансформатора тока является коэффициент трансформации. Коэффициент трансформации трансформатора тока — это отношение величины первичного тока к величине вторичного тока.

При расчетах коэффициент трансформации разделяют на:

  • действительный (N)
  • номинальный (Nн)

В принципе их названия говорят сами за себя.

Действительный коэффициент трансформации — это отношение действительного первичного тока к действительному вторичному току. А номинальный коэффициент — это отношение номинального первичного тока к номинальному вторичному току.

Вот примеры коэффициентов трансформации трансформаторов тока:

  • 150/5 (N=30)
  • 600/5 (N=120)
  • 1000/5 (N=200)
  • 100/1 (N=100)

6. Электродинамическая стойкость

Здесь сразу нужно внести ясность, что такое ток электродинамической стойкости — это максимальное значение амплитуды тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без каких-либо повреждений, препятствующих дальнейшей его исправной работе.

Своими словами, это способность трансформатора тока противостоять механическим и разрушающим воздействиям тока короткого замыкания.

Ток электродинамической стойкости обозначается индексом — Iд.

Есть такое понятие, как кратность электродинамической стойкости. Обозначается индексом Кд и является отношением тока электродинамической стойкости Iд к амплитуде номинального первичного тока I1н.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока. Читайте статью про классификацию трансформаторов тока. По другим типам трансформаторов тока данные о токе электродинамической стойкости можно найти все в том же паспорте.

7. Термическая стойкость

Что такое ток термической стойкости?

А это максимальное действующее значение тока короткого замыкания за промежуток времени t, которое трансформатор тока выдерживает без нагрева токоведущих частей до превышающих допустимых температур и без повреждений, препятствующих дальнейшей его исправной работе. Так вот температура токоведущих частей трансформатора тока, выполненных из меди не должна быть больше 250 градусов, из алюминия — 200.

Ток термической стойкости обозначается индексом — ItТ.

Своими словами, это способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания за определенный промежуток времени.

Существует такое понятие, как кратность тока термической стойкости. Обозначается индексом Кт и является отношением тока термической стойкости ItТ к действующему значению номинального первичного тока I1н.

Все данные о токе термической стойкости Вы можете найти в паспорте на трансформатор тока.

Ниже я представляю Вашему вниманию скан-копию этикетки на трансформатор тока типа ТШП-0,66-5-0,5-300/5 У3, где указаны все его вышеперечисленные основные параметры и характеристики.

P.S. На этом я завершаю свою статью про основные характеристики и параметры трансформаторов тока. В следующих статьях я расскажу Вам про обозначение выводных концов, принцип работы трансформатора тока, режимы работы, класс точности и другие интересные темы.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/parametry-transformatora-toka/

Трансформаторы тока (ТТ), принцип работы и область применения

Как изменить коэффициент трансформации трансформатора тока

Функционирующие энергетические системы требуют постоянного контроля и различных коммутирующих действий.

И для того, чтобы преобразовывать высоковольтные электрические величины в пропорционально измененные аналоги и используются трансформаторы.

В частности для уменьшения первичного тока до приемлемых величин для измерительных и защитных приборов используются трансформаторы тока. О них и пойдет речь в приведенном материале.

Как функционирует трансформатор тока

Работа трансформатора тока (ТТ) основана на законе об электромагнитной индукции, который работает в электрических и магнитных полях. Они подвержены изменениям по форме гармоник синусоидальных величин переменного характера.

В трансформаторе тока происходит трансформация первичного вектора тока во вторичное значение с полным соблюдением пропорциональности и с сохранением угла.

yandex.ru

По выше представленной схеме можно понять процессы, идущие в работающем в трансформаторе тока. И они выглядят так:

По силовой обмотке 1 проходит ток I1, при этом преодолевается сопротивление обмотки Z1. Благодаря этому процессу вокруг катушки образовывается магнитный поток Ф1, который улавливается магнитопроводом, размещенным под прямым углом к направлению вектора I1. Благодаря именно подобному размещению обеспечиваются наименьшие потери электрической энергии при трансформации ее в магнитную.

Сформированный магнитный поток Ф1 пронизывает не только силовую катушку 1, но также и пронизывает вторичную обмотку 2. В результате этого во вторичной катушке наводится ЭДС E2, под влиянием оной в 2 формируется I2, уже преодолевающий сопротивление катушки Z2 и сопротивление нагрузки Zн. В результате данного процесса на выводах вторичной обмотки формируется падение напряжения U2.

При этом магнитный поток Ф2 уменьшает магнитный поток Ф1, а Ф трансформатора тока формируется геометрическим сложением двух векторов Ф1 и Ф2.

Коэффициент трансформации трансформаторов тока задается соотношением векторов I1/I2. И данное значение закладывается при разработке (производстве) изделий.

По причине того, что в работающем ТТ протекающий ток постоянно меняется, данный коэффициент указывается в номинальной форме, например 600/5.

Это Указывает на то, что данный ТТ рассчитан максимум на 600 Ампер и если такой ток будет в первичке, то ток во вторичке будет равен 5 Ампер.

Так же при проектировании закладывается еще очень важный параметр – класс точности, которым характеризуется величина отклонения реальных значений ТТ от расчетных.

Опасные факторы при работе ТТ

Так как магнитопровод ТТ реализован из электротехнической стали, обладающей отличной токовой проводимостью и он связывает магнитным путем две изолированные обмотки, в процессе работы есть вероятность повреждения изолирующего слоя, в результате чего вторичка может оказаться под высоким потенциалом.

Поэтому чтобы избежать электротравм среди обслуживающего персонала и сохранению работоспособности подключенного оборудования, один из выводов вторичной обмотки в обязательном порядке заземляется.

Выводы вторичной обмотки маркируются «И1» и «И2», а первичной обмотки «Л1» и «Л2». Если трансформатор включен в работу, то вторичные обмотки обязаны быть нагружены (подключены), в противном случае устанавливается закоротка.

Это необходимо выполнить потому, что при работе по первичной обмотке протекает ток, обладающий определенной мощностью (S=U*I). Она так же проходит процедуру трансформации во вторичные значения.

И если токовые цепи вторичной обмотки разорваны, то значение тока стремится к нулевому значению, а вот напряжение наоборот резко увеличивается и на разомкнутой вторичке образуется высокое напряжение .

А это крайне опасно!

Важно. Именно поэтому все токовые цепи должны быть собраны, а на неиспользуемых кернах должны быть установлены закоротки.

Модификации ТТ

Промышленность выпускает огромное количество вариаций трансформаторов тока, разнообразных размеров и классов точности. Но в энергетике получили широкое распространение комбинированные трансформаторы тока, где в одном изделии совмещены два керна: измерительный (0,5 R) и Релейный (защитный 10R)

По назначению трансформаторы тока подразделяются на:

1. Промежуточные. Предназначены для повторного преобразования величины.

2. Защитные. Подключаются к токовым цепям защит.

3. Лабораторные. Обладающие повышенным классом точности и служащие в качестве проверочных устройств.

4. Измерительные. Служат для передачи соразмерно измененного тока на счетчики, контролирующие потребленную (отпущенную) электроэнергию.

Также трансформаторы тока бывают:

– Наружной установки, предназначенные для монтажа на ОРУ (открытая распределительная установка);

– Для закрытых установок, устанавливаемые в ячейках ЗРУ (закрытая распределительная установка);

– Встраиваемые непосредственно в оборудование. Например, в счетчиках прямого включения есть свои мини ТТ;

yandex.ru

Как проверяют ТТ

Самой главной возможной неисправностью работающего трансформатора тока, является пробой изоляции. Поэтому рабочие ТТ подвергаются периодической проверке Такими службами как:

Служба изоляции и Релейная служба.

При этом Служба изоляции производит проверку ТТ повышенным напряжением, а релейная служба проверяет ВАХ (Вольт –Амперная Характеристика), проверяет коэффициент трансформации. И если испытания показали, что ТТ неисправен, то он бракуется и меняется на новое того же номинала. В противном случае составляется протокол проверки:

Заключение

Широта использования этого изделия говорит о том, что трансформаторы тока являются неотъемлемой и, несомненно, важной частью всей энергетической системы. Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!

Источник: https://zen.yandex.ru/media/energofiksik/transformatory-toka-tt-princip-raboty-i-oblast-primeneniia-5be44d997b5cd300aa34523e

Коэффициент трансформации тока и примеры его расчетов

Как изменить коэффициент трансформации трансформатора тока

Все трансформаторы тока обладают рядом характеристик, которые позволяют использовать устройство в той или иной ситуации в зависимости от индивидуальных целей. Выбор конкретного трансформирующего прибора обусловлен в том числе и коэффициентом трансформатора тока. Как рассчитать эту величину и применить ее на практике? Рассмотрим основные виды трансформаторов этого типа.

Базовая классификация устройств трансформаторного тока

Это очень большая группа приборов, которая может делиться на различные группы. Среди самых распространенных:

  1. Классы по способу установки:
  • Монтируемые на  поверхности или опорные трансформаторы.
  • Проходные, которые крепятся к шинопроводу и играют роль изолятора.
  • Шинные, прикрепленные к шине,  выполняющей функцию первичной обмотки.
  • Встроенные, устанавливаемые устройствах силового типа, а также баковых выключателях.
  • Разъемные, оперативно устанавливающиеся на кабелях и не требующие отключения цепи.

Трансформатор тока: а) – устройство трансформатора тока.

  • Классы по типологическим особенностям изоляции:
  • С изоляцией литого типа, в качестве которой используется эпоксидная смола и специальные изолирующие лаки.
  • Помещенные в корпус из пластмассы.
  • Имеющие  высокоэффективную твердую полимерную, бакелитовую или фарфоровую изоляцию.
  • Изолированные вязкими составами, обладающими обволакивающими свойствами.
  • Масляные, изолированные специальными составами.
  • Газонаполненные, использующиеся для высоких и сверхвысоких напряжений.
  • А также смешанная бумажно-масляная изоляция с внушительным ресурсом эффективности.

Трансформаторы тока с литой изоляцией: а) — многовитковый, б) — одновитковый, в) — шинный

Классификация в зависимости от коэффициента трансформации ↑

Еще один немаловажный момент при выборе нужного трансформатора — это коэффициент трансформации тока (Кт).

По количеству коэффициентов трансформаторы тока можно определять как:

  • Одноступенчатые, имеющие всего один коэффициент трансформации.
  • Многоступенчатые, имеющие два и более Кт. Еще их называют каскадными. Большее число Кт получается в результате изменения количества витков в обмотках, а также при наличии вариативности, то есть нескольких вторичных обмоток.

Как выбрать трансформатор тока по коэффициенту трансформации? ↑

При выборе такого типа трансформаторных устройств существует ряд определенных ограничений и правил установки дополнительного оборудования.

Так, например, установка трансформатора тока, который имеет завышенный Кт, не желательна. При повышенном коэффициенте допускается установка приборов учета непосредственно на приемном вводе.

Если же речь о силовых приборах трансформации, то счетчики следует монтировать со стороны напряжения с самым низким значением.

Сегодня на рынке самыми популярными являются именно трансформаторы с одним КТ, так как этот показатель у устройства гарантированно не меняется на протяжении всего времени эксплуатации.

Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения испытания машин постоянного тока, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытания машин постоянного тока или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Как определить коэффициент трансформации самостоятельно? ↑

Как правило такие параметры обязательно указываются в документации, прилагающейся к трансформатору, а также в обязательном порядке обозначаются на оборудовании или корпусе устройства. Но бывает, что Кт трансформатора тока необходимо определить самостоятельно, имея только данные, полученные эмпирическим путем. Как это сделать?

Через первичную обмотку такого устройства необходимо пропустить ток, замкнув накоротко вторичную обмотку. Затем соответствующим прибором нужно измерить величину электрического тока, который проходит во время эксперимента по вторичной обмотке.

Первичная и вторичная обмотки.

После этого, следует значение первичного тока, которое было подано на первичную обмотку, разделить на значение тока, полученное в результате наших замеров во вторичной обмотке. Частное и будет искомым коэффициентов трансформации.

Особенности расчетов коэффициента трансформации ↑

Расчет отношений первичного и вторичного токов может вестись в двух направлениях в зависимости от задач, которые стоят перед специалистом.

Коэффициент трансформации трансформатора тока можно разделить на:

  • действительное значение (N);
  • номинальное значение (Nн).

В первом случае мы находим соотношение действительного первичного тока к действительному вторичному току. Во втором – отношение номинального первичного тока к номинальному.

К примерам стандартных величин коэффициента ТТ можно отнести: 150/5 (N=30), 600/5 (N=120), 1000/5 (N=200) и 100/1 (N=100).

Примеры расчетов ↑

Рассмотрим принцип расчета потребления на примере трансформатора тока с коэффициентов трансформации 100/5.

Как определить коэффициент трансформации трансформатора тока? Если вы сняли показания счетчика по учету электроэнергии и значение показаний оказалось равно 100 кВт/часов, при этом прибор используется с трансформатором 100/5. То расчет фактического потребления не пониженных значений следует производить следующим образом:

Сперва следует узнать во сколько раз ваш трансформатор снижает ток нагрузки. Для этого нужно просто 100 разделить на 5 — вы получите значение коэффициента — 20.

Узнать реально существующий расход электроэнергии можно, взяв коэффициент и умножив его на значение вашего прибора учета, то есть на 100 кВт. Реальное потребление составило 2000 кВт/часов.

Особенности значений, получаемых при измерении коэффициента трансформации ↑

Измеряя коэффициент трансформации ТТ, следует знать, что допустимые отклонения полученного значения от прописанных в документации или показателей аналогичного полностью исправного прибора не должны быть более 2 процентов.

Особенностью замеров у встроенных устройствах является то, что все показания снимаются только на ответвлениях, которые являются рабочими. Остальные же части обмоток в расчет не берутся и не проверяются.

Разделительное трансформирующее устройство на вторичной обмотке может создавать напряжение около 5В, а значение тока должно быть около 1000А.

На что еще обратить внимание при выборе трансформатора? ↑

Не забывайте, что любое оборудование также имеет свой срок «годности». Потому, при покупке обязательно проверьте год и квартал выпуска вашего трансформатора. Напомним, что межповерочные интервалы у всех ТТ должны составлять не более 4 лет с момента изготовления.

Разновидности трансформаторов тока.

Чтобы избежать покупки просроченного оборудования, обязательно сверьте данные, которые указаны в паспорте изделия и на шильдике, закрепленном на корпусе трансформатора. Они должны полностью совпадать.

Если вы приобретаете трехфазный счетчик, то с момента выпуска и до пломбировки должно пройти не более года иначе вам придется потратить дополнительные средства, оплачивая государственную проверку или покупку более «свежего» прибора учета. Чтобы проверить дату, обратите внимание на свинцовую пломбу — там указан квартал выпуска римскими цифрами.

Источник: https://energiatrend.ru/news/koefficient-transformacii-transformatora-toka

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.